
UAS Landing with Deep Reinforcement Learning
Jonathan Lee

Dept. of Computer Science
The George Washington University

Washington, DC, 20052, USA
jonathanlee@gwu.edu

Zhenhao Zhao
Dept. of Computer Science

Dept. of Biomedical Engineering
The George Washington University

Washington, DC, 20052, USA
zzhao98@gwu.edu

Abstract—Small unmanned aircraft systems (UAS) have
proven their usefulness for operations such as aerial cinematog-
raphy, last-mile package delivery, and infrastructure monitoring.
In order to achieve higher levels of autonomy and scale up
operations without tele-operating human pilots, we investigate
a method for autonomous UAS landing with deep reinforcement
learning. Specifically in this paper, we train a Deep Q Network
to learn control policies for landing a multirotor on a landing
pad. We apply our method to an AirSim simulation environment
with stationary obstacles and a landing pad.

Index Terms—Unmanned Aircraft System (UAS), Autonomous
Landing, Deep Reinforcement Learning (DRL), DQN

I. INTRODUCTION

Autonomous landing requires precise control to both iden-
tify the landing pad and position the multirotor above the
landing pad. Additionally, there is variability in each landing
due to the aircraft approaching the landing pad from different
directions or altitudes, and different situations on the ground.
To address this problem, we formulated autonomous landing
as a reinforcement learning problem where the drone must
take an optimal set of actions to land on the landing pad.

Numerous approaches have been taken for autonomous
landing of a drone, including both classical and deep learning
approaches [1] [2]. The advantage of using deep reinforcement
learning is that the drone can be trained to autonomously
land without any labeled data. However, the main challenge is
combating a large state space and exploring optimal policies.
While we do not introduce a new deep reinforcement learning
method, our contribution is building a deep reinforcement
learning based solution in the AirSim simulation environment.

II. RELATED WORK

A. Safety Awareness for UAS Landing

An accurate, fast, and reliable perception module is a key
component for a fully autonomous landing stack, together
with a prediction module and planning/control module. In
our previous research [3], we demonstrated an algorithm
for vision-based perception with safety awareness for UAS
autonomous landing. In the paper, we addressed the issue of a
UAS needing to recognize landing scene reconfiguration such
as moving or static obstacles near or on the designated landing
pad. In real-world landing situations, obstacles often include
people, pets, cars, and bikes. Thus, we explored the feasibility
of using computer vision based perception to (1) identify the

landing pad and (2) detect the obstacles near or on the landing
pad. The system would then alert a planning/control module
that there is a hazard in the landing zone. We demonstrated
real-time detection on video footage we collected from real
world landings.

In this paper, we focus on a different aspect of autonomous
landing, the development of a planning/control module that
implements a policy to avoid obstacles and land on a landing
pad. We kept in mind that our planning/control module should
be inter-operable with our previous perception module. There-
fore, our model uses only images taken from a downward
facing camera on the UAS as the input. In future work
the perception and planning/control modules could be linked
together to provide a safer landing approach that pauses the
landing when a hazard is nearby the landing pad.

B. Deep Reinforcement Learning

Deep Reinforcement Learning (DRL) was first introduced
by DeepMind, an artificial intelligence research organization
[4]. In this paper, they proposed the DQN algorithm to play
Atari games through an agent learning solely from image
input from video frames. Afterwards, DeepMind published an
improved version of the DQN algorithm [5] on Nature, which
combines deep learning with RL to implement a new end-
to-end learning algorithm from perception to action. A high-
level anecdote is the learning process of humans perceiving
visual information, such as what the eyes see, and then directly
making corresponding behaviors (output actions) through the
brain (deep neural network). Subsequently, DeepMind pro-
posed AlphaZero which used DRL and Monte Carlo Tree
Search [6] to achieve a level of performance beyond the most
competitive human for the game of chess.

III. METHODS

A. Problem Formulation

The problem of landing a drone can be formalized as a
Markov Decision Process (MDP) where an agent interacts with
the environment. At each time-step, the agent can select a
single action. This action results in a change in state in the
environment.

The simulation keeps track of the vehicle’s previous po-
sition, current position, and whether it has collided with an
obstacle or not. This allows the simulator to determine the
vehicle’s velocity and reset the simulation when a collision

1



occurs. All positions are measured from a global reference
frame in Cartesian coordinates.

The entire internal state of the environment is not com-
pletely observable to the agent. In our situation, the agent is
equipped with a downward facing color camera. It can only
observe the world through images taken by the camera. The
input of these images into the DQN model will be discussed
in the next section.

The action space contains 7 discrete actions a ∈
{a0, a1, a2, a3, a4, a5, a6}. Each of these actions in Equation
(1) map to a vector (x, y, z)⊤ corresponding to a the compo-
nents of a velocity vector in 3D space. This velocity vector
is added to the drone’s current velocity. Then flight controller
is instructed to fly with the new desired velocity components
Vt+1 in Equation (2).

a0 = (v, 0, 0)⊤

a1 = (0, v, 0)⊤

a2 = (0, 0, v)⊤

a3 = (−v, 0, 0)⊤

a4 = (0,−v, 0)⊤

a5 = (0, 0,−v)⊤

a6 = (0, 0, 0)⊤

(1)

Vt+1 = Vt + a =

Vx

Vy

Vz

+

ax
ay
az

 (2)

Additionally, the agent receives a reward, R(s, a) at each
time step. The reward is related to the state of the environment,
s, and the action of the drone, a. Positive rewards correspond
to desirable results, such as descending towards the landing
pad, and low rewards correspond to poor actions, such as
crashing into obstacles. The goal of the agent is to select
actions that will maximize its future rewards.

Therefore, our reward function should incentivize drone
behavior that moves the drone closer to the landing pad and
disincentive the drone from flying away from the landing pad.
Hence, the reward is a function of the distance d(s) between
the drone’s position, s, and the landing pad position, p in
Equation (3).

d(s) =
√
(px − sx)2 + (py − sy)2 + (pz − sz)2 (3)

We implement the reward in Equation (4) as a piecewise
function. If the drone is right above the landing pad, it receives
a reward of 100. If the distance to the landing pad is greater
than a threshold τ , then the reward is −10. We set τ to a
value greater than d(s0) to penalize the drone from flying
farther than its starting position. If the distance is less than
τ , then the drone will receive a reward proportional to the
square root of d(s). We use this function because when the
drone is approximately τ/3 from the landing pad, it starts
receiving a large positive reward. Finally, if a collision with
an obstacle is detected, the reward is −100. The episode ends

immediately after receiving a reward for landing or colliding
with an obstacle.

R(s) =


100 d(s) ≤ 1

4−
√
d(s) 1 < d(s) ≤ τ

−10 d(s) > τ

−100 if collision

(4)

The optimal action-value function Q∗(s, a) is defined as
the maximum expected reward achievable by following any
strategy. Once the optimal action-value function is determined,
the optimal strategy is simply the action that maximizes
Q∗(s, a). However, in practice, it is impractical to compute
the action-value function due to the large state space. Instead,
we apply deep Q-learning to best approximate this function.

B. Deep Q Network

The DQN algorithm is a method of passing Q-learning
through a neural network to approximate the value function.
It has achieved results beyond human-level players in classic
Atari 2600 games. We take Break Out Bricks as an example. It
has a high-dimensional state input (original image pixel input),
low-dimensional action output (discrete actions: up, down, left,
right, firing shells, etc.). A screenshot of Break Out Bricks as
shown in Figure (1).

Fig. 1. Break Out Bricks game

The input of our DQN algorithm is 4 frames of the game
displays. We first pre-process the images by cropping and
converting the original RGB image to grayscale images such
that the images are now single channel. The size of each pre-
processed frame should be 84 x 84. After that, we stack 4
such pre-processed frames to make a 3D array, the size of of
which should be 84 x 84 x 4. Then this 3D array is passed as
input to the deep convolutional neural network to calculate the
q value of each action so we can decide the optimal action to
choose. The whole structure is shown in Figure 2. The model
first uses two convolutional layers to extract the features of
the input. And then analyze it and output the q value of each
actions by using two full connected layers. The output state
number will change depending on the different games. There
are 7 different actions to control our multirotor.

2



Fig. 2. The structure of the DQN

The loss function is based on the reward and it uses two
networks. The evaluation network will output the prediction
of current state: Q̂(sj+1, a

′; θ) directly, and the target network
will output next state q value: Q̂(sj+1, a

′; θ−). The ground
truth q value yj of current state is calculated by adding the
output of target network to the instant reward rj .

yj =

{
rj terminate
rj + γmaxa′Q̂(sj+1, a

′; θ−) otherwise
(5)

Therefore, based on the model prediction q value, the loss
is calculated by the following error:

Ei(θi) = yj − Q̂(sj+1, a
′; θ) (6)

We can keep the target Q value constant for a period of time,
which reduces the correlation between the current Q value and
the target Q value and improves the stability of the algorithm.

Another advantage of DQN is replay buffer. DQN will store
the transitions (s, a, r, s′) in an array as a buffer and then train
the model by randomly selecting transitions from this buffer.
The principle is very similar to that of stochastic gradient
descent (SGD). Training samples should be independent to
each other, but neighboring transition are highly correlated.
The replay buffer will store in memory all the transitions in
a period of time to make the training data distribution more
steady. Additionally, it will forget transition that occurred too

far in the past to make sure the distribution of the replay buffer
can simulate the current distribution of the policy.

IV. EXPERIMENTS

A. AirSim

We conducted our experiments in AirSim [7], an open-
source, cross platform simulator for drones and cars. It is
built on Epic Games’ Unreal Engine 4 [8]. We chose this
platform because it can create physically and visually realistic
simulations, and it is a popular choice for researching AI
algorithms for autonomous vehicles.

Figure (3) shows our simulation environment setup. We use
a flat world model containing obstacles composed of stacked
blocks. These obstacles of different heights and sizes can be
representative of buildings, trees, or vehicles.

The landing pad is represented by a small orange square,
of similar size and shape to that of small hobby drone landing
pads. The drone’s starting position is 10 meters to the left and
10 meters down from the landing pad with an elevation of
50 meters. The simulation starts each episode with the drone
hovering with zero initial velocity.

3



Fig. 3. Simulation Environment

We utilize the Python API to control the multirotor in the
simulation programmatically. Through the API, we are able
to retrieve images, get vehicle state, and control the vehicle
through either position or velocity control commands. The
multirotor has a downward facing camera that supports depth
and color images. The color images used as the input to the
DQN after down sampling and cropping.

Figure (4) shows an image taken by the drone’s camera after
being converted to grayscale. The final steps of pre-processing
downsample and crop to a square image.

Fig. 4. DQN Input Image

B. Training

The DQN is trained by setting up AirSim as an OpenAI gym
wrapper [9]. The gym wrapper allows us to run a training loop
where we sequence through obtaining an image, computing the
action to take based on the current policy, getting a reward,
etc. The training hyperparameters are configured as in Table
I.

V. RESULTS

The result of our training process is shown in Figure 5 and
Figure 6. We track the reward and distance to the landing pad
for each transition. As shown in Figure 5, the distance between
the drone and landing pad decreases over time. Additionally,
the reward converges towards zero over time. While our
results appeared promising, we did not quite achieve the drone
landing consistently on the landing pad. In our testing, the
multirotor seemed to approach only half way to the landing
pad.

TABLE I
DQN HYPERPARAMETER TRAINING PARAMETERS

Parameter Value
learning rate 0.00025
batch size 32
training freq 4
target update interval 10000
learning starts 200000
buffer size 500000
max grad norm 10
exploration fraction 0.1
exploration final eps 0.01

Fig. 5. Distance decreasing over time

Fig. 6. Reward increasing over time

In Figure 7, we show screenshots of the drone executing the
optimal policy computed while training. The drone descends
towards the ground and moves horizontally towards the land-
ing pad. However, it never actually lands on the landing pad.

4



We were not able to diagnose this issue and find an explanation
as to why the performance stalled before landing.

Fig. 7. Screenshots of multirotor in the simulator

VI. CONCLUSION AND FUTURE WORK

In this work, we have demonstrated our approach to land a
multirotor on a designated landing pad using deep reinforce-
ment learning. We recognize that our approach is only the
start to a planning/control module, and there is much to be
improved.

Our approach discretized the action space into 7 actions
corresponding to directions in a grid world. This would not
be precise enough in a real-world landing scenario, and a
continuous action space is more desirable to fine-tune the
landing.

In the future, we can make the simulation scenario more
realistic. For example, the initial location of the drone and
landing pad can be randomized. Additionally, new scenes can
be introduced to include moving obstacles, such as pedestrians,
cars, and buildings.

REFERENCES

[1] Y. Xu, Z. Liu, and X. Wang, “Monocular vision based autonomous
landing of quadrotor through deep reinforcement learning,” in 2018 37th
Chinese Control Conference (CCC), 2018, pp. 10 014–10 019.

[2] M. Saavedra-Ruiz, A. M. Pinto-Vargas, and V. Romero-Cano, “Monocular
visual autonomous landing system for quadcopter drones using software
in the loop,” IEEE Aerospace and Electronic Systems Magazine, vol. 37,
no. 5, pp. 2–16, 2022.

[3] Z. Zhao, J. Lee, Z. Li, C. H. Park, and P. Wei, “Vision-based perception
with safety awareness for uas autonomous landing,” in SciTech, 2023.
[Online]. Available: https://lnkd.in/eDZUJHkA

[4] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, “Playing atari with deep reinforcement
learning,” 2013. [Online]. Available: https://arxiv.org/abs/1312.5602

[5] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. A. Riedmiller, A. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, pp. 529–533, 2015.

[6] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel, T. Lillicrap, K. Simonyan,
and D. Hassabis, “Mastering chess and shogi by self-play with a
general reinforcement learning algorithm,” 2017. [Online]. Available:
https://arxiv.org/abs/1712.01815

[7] S. Shah, D. Dey, C. Lovett, and A. Kapoor, “Airsim: High-fidelity visual
and physical simulation for autonomous vehicles,” in Field and Service
Robotics, 2017. [Online]. Available: https://arxiv.org/abs/1705.05065

[8] “Unreal engine 4,” https://github.com/EpicGames/UnrealEngine, 2021.
[9] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman,

J. Tang, and W. Zaremba, “Openai gym,” 2016. [Online]. Available:
https://arxiv.org/abs/1606.01540

5


